Monatshefte fiir Chemie

Chemical Monthly
© by Springer-Verlag 1983

Monatshefte far Chemie 114, 525—533 (1983)

Number and Symmetry of Kekulé Structures for Some
Aromatic Chain Molecules

Sven J. Cyvin

Division of Physical Chemistry, The University of Trondheim,
N-7034 Trondheim-NTH, Norway

{ Received 14 October 1982. Accepted 3 November 1982)

A class of aromatic molecules with fused benzene rings is considered. It is
characterized by one, two or three straight chains of benzene rings meeting at
one ring. The group-theoretical problem of symmetry in terms of I g, and ¥ g1
is solved; explicit formulas are given for the symmetry groups Dsj, and Cly,,.
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Anzahl und Symmetrie von Kekulé-Strukturen fir einige aromatische Ketten-
Molekiile

Es wird eine Klasse aromatischer Molekiile behandelt, die dadurch charak-
terisiert ist, daB eine, zwei oder drei gerade Ketten von Benzolringen an einem
Ring aufeinandertreffen. Das gruppentheoretische Problem der Symmetrie ist
in Form von I'ge und y gep gelost; fir die Symmetriegruppen Dg;, und Cs,
werden explizite Formeln angegeben.

Introduction

The numbers and symmetries of Kekulé structures for condensed
aromatics have been studied to some extent!.2. In a previous work? the
single-chain aromatics were treated. In those molecules the centers of
the fused benzene rings may be connected by a single (unbranched) line.
In the present work we consider chain aromatics with one branching
point. Only the simplest case is to be treated, assuming that all the sub-
chains are straight.
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Results and Discussion

General Theory

Up to three sub-chains may be attached to one benzene ring in chain
aromatics; let the number of rings in the sub-chains be designated ¢,
) and Q3. We make the convention that

=G =@ (1)

Fig. 1 shows examples of chain aromatics of the considered class and
with different values of §);. Allowance is made for one or more §); equal

00 Qop X0

ANTHRACENE

0 =2 TETRAPHENE DIBENZ(a,c )ANTHRACENE
1 _ . -
@ =a-0 9 =2 &= =2
K=4 9 =0 k=7 9= 8=
=13
PENTAPHENE TRIPHENYLENE
9 -a,=2 9 =8,=8-=1 TRINAPHTHYLENE
¢ -0 K=9 Q=a a2
x=10 K= 28

Fig. 1. Some chain aromatics. The number of Kekulé structures (K) is given in
each case

to zero. Consequently some single-chain aromatics oceur among the
considered molecules. Some examples are anthracene, tetraphene and
pentaphene (see Fig. 1).

The total number of benzene rings in one molecule is obviously

Q=1+0+ 0+ (2)
The number of Kekulé structures is designated by K. It was found

K=1+(@ +1)(@+1)(@+1) 3)
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Special Cases

Benzene

The benzene molecule (¢ = 1) is obtained as a trivial special case for

H=0=0=0 (4)
The formula (3) gives correctly

K=2 (5)
in this case.

Polyacenes

Polyacenes are single-chain aromatics with the fused benzene rings
in a straight chain. Anthracene in Fig. 1 is an example. This special case
emerges by

G=03=0 (6a)

() #+ 0 excludes benzene. The total number of rings is obviously
Q=1+, cf eqn. (2). On inserting

=1 (6b)

along with (6a) into eqn. (3) one obtains
K=1+¢ (7

in consistence with previous findings?.

Polyphenes with @ =1, 3, 5, ...

For polyphenes with an odd number of rings one has
|
Q1=Q2=§(Q-—1), @=0 (8)

Pentaphene in Fig. 1 is an example. The formula (3) gives in this case

Kzl—i-i(Q-l-l)2 9)

which is identical to a previous result2.

Polyphenes with @ =2, 4, 6, ...

For polyphenes with an even number of rings one has

1 1
Ql=§Qa QZZEQ‘L Q=0 (10)

36%
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Tetraphene in Fig. 1 is an example. On inserting into egn. (3) one
obtains

1
K=1Q(Q+2) (11)

as before2.

Trigonal Special Cases
For

Qi=0=0;=q K=1+(@q@+1p; ¢=+0 (12a)

the considered molecules belong to the symmetry group Dg;. In this
case

Q=3¢+1 (12b)

Fig. 1 shows the examples of ¢ = 1 (triphenylene) and g = 2 (trinaphthy-
lene).

The group-theoretical problem of symmetries!.2.:4 of the Kekulé
structures of this class of molecules was solved with the following
results.

(i) There are g+ 2 totally symmetrical Kekulé structures. They
belong to the irreducible representation 4,

(i) There are ¢ (¢ + 1) symmetrically equivalent sets with 3 struc-
tures in each. Such 3 structures are distributed among the irreducible
representations according to 4;" + F'.

1
(ii1) There are éq (g + 1) (¢—1) symmetrically equivalent sets with 6

Kekulé structures in each, having the symmetrical structure
A+ A4 +2F.

Fig. 2 shows the 9 Kekulé structures of triphenylene (¢ = 1). They
consist of (i) 3 totally symmetrical ones, (ii) 2 symmetrically equivalent
sets with 3 structures in each, and none of the category (iii) above. The
4 totally symmetrically Kekulé structures (i) of trinaphthylene (g = 2)
are shown in Fig. 3. Fig. 4 shows 6 representative structures for the
symmetrically equivalent sets belonging to the category (ii). From each
of them 3 structures are generated by using the appropriate symmetry
operations. Finally the structure in Fig. 5 generates 6 symmetrically
equivalent structures belonging to the category (iii). The total number
of 28 Kekulé structures are hence distributed among the irreducible
representations according to 'k, =114, + 45 + 8 E'".
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Fig. 2. The nine Kekulé structures of triphenylene classified according to
symmetry. The total symmetrical structure is I'g o, =5 A4, + 2 B’

P

Fig. 3. The four totally symmetrical (4,") Kekulé structures of trinaphthylene
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Fig. 4. Six representative Kekulé structures of trinaphthylene. Each of them
generate three symmetrically equivalent structures belonging to 4," + £’

ore
<

Fig. 5. The only Kekulé structure of trinaphthylene which generates six
symmetrically equivalent structures (4, + 4y’ + 2 E")
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In general the symmetrical structure (I'g,;) of a trigonal aromatic
molecule of the considered type reads

s

1 1
teratig— DA +oqlg+ g+ 2) (13)

The symmetrical structure may also be given in terms of the characters
(x ) Of the representation on the basis of the Kekulé structures. In this
case they are:

Ykek(B) =t gerlon) =1+ g+ 13 =K
L ke (C3) = A ke (S3) =g + 2 (14)
YEek(C2) =t ke (op) =1+ (g + 1)

Special Cases of (', Symmetry

The cases of Cy, symmetry among the considered class of molecules
are characterized by

@ >C=03%0 (15a)

or
h==0>0 (15b)
These types are exemplified by (a) pentaphene and (b) dibenz(a,c)
anthracene, respectively; cf. Fig. 1. The z-axis is conventionally taken
as the two-fold symmetry axis. Furthermore we adher to the con-
vention of choosing the z-axis perpendicular to the molecular plane. We
define ¢ as the number of benzene rings in the sub-chain along the z

axis, and ¢’ as the number in one of the two symmetrically equivalent
sub-chains; ef. Fig. 6. With the aid of eqns. (2) and (3) one obtains

Q=14+g+2¢, K=14+(@+1)(¢+12 (16)

y PENTACENE
7=0q =2
DIBENZ(a, ¢ )ANTHRACENE
=2 ¢ =1

Fig. 6. Two chain aromatics of Cy, symmetry, both with @ =5
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For this class of molecules it has been found:

(i) There are 1+ (¢ + 1) (¢’ + 1) totally symmetrical Kekulé struc-
tures. They belong to A4;.

1
(ii) All the other Kekulé structures occur in 2 (g+1)q¢ (¢ + 1) pairs,

each pair being a symmetrically equivalent set with the symmetrical
structure A, + Bs.

Fig. 7 shows the 7 totally symmetrical Kekulé structures of
dibenz(a,c)anthracene. The remaining 6 Kekulé structures of this mo-
lecule occur in pairs; one member of each is shown in Fig. 8. The total
number of 13 Kekulé structures follow I, = 10 4; + 3 B,.
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Fig.7. The seven totally symmetrical (4;) Kekuié structures of dibenz(a,c)-

anthracene

In general the symmetrical structure of a molecule of the considered

type reads
i
FKeIc: |:1 =+ §<q + 1) (q/ + 1) (Q’ + 2>J Al

+%<g+1>q’<q’+1>B2 (17)
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Fig. 8. Three representative non-totally symmetrical Kekulé structures of

dibenz(a,c)anthracene. The mirror image of each is the other member of a
symmetrically equivalent set belonging to 4, + By

In terms of the characters:

XKeIc(E> = XKek(Gyz) =1+(g+ 1) (Q' +1@2= K
L xek(C2) = 1 k(o) =1+ (g +1) (¢ + 1) (18)

The symmetrical polyphenes (e.g. pentaphene) are special cases of
the molecules considered here when

g=0; @=1+4+2¢, K=1+(¢+1) (19)

These relations are consistent with eqns. (8) and (9); one has namely
q=0s, ¢ =@, =Q;. When the number of totally symmetrical Kekulé
structures is denoted S one obtains

|
S=1+(q+1)(q’+1)=§(Q+3) (20)
in consistence with a previously reported formula2.

Note added in proof: After this paper was in press a very interesting
theorem concerning Kekulé structures was published by I. Gutman, Communi-
cations in mathematical Chemistry (match) 13, 173 (1982). The paper contains
also a useful bibliography to previous developments.
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